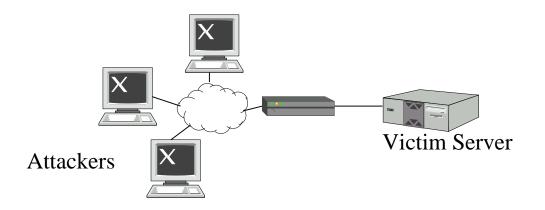
Mayday: Distributed DoS Filtering

David Andersen

MIT Laboratory for Computer Science

March 2003

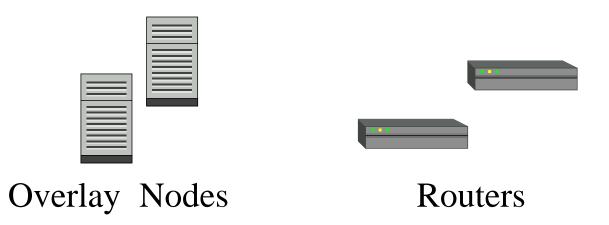

http://nms.lcs.mit.edu/ron/

Proactive Defense against DoS

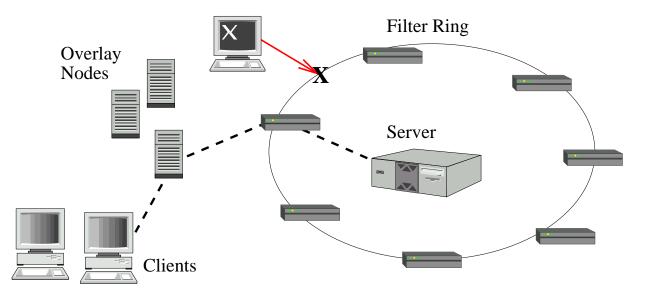
- Many systems *trace* DoS attacks
- Some *react* to DoS attacks
- A few *prevent*, but
 - ✗ Require near-global deployment, or
 - X Don't protect outside of your own network
- ✓ Mayday:
 - incrementally deployable
 - proactive defense

Flooding Attacks

- Overload servers (not "ping of death")
- Probably have lots of attack machines...
- ... and can spoof IP addresses
- We'll discuss more powerful attackers later



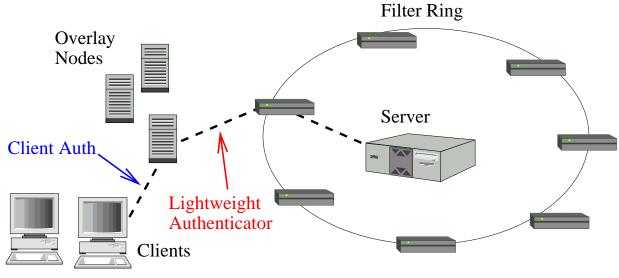
Overlay Nodes and Filtering Routers


Borrow an idea from SOS

(Secure Overlay Services, [Sigcomm 2002]):

Use overlay nodes and normal routers to protect servers.

Overlay Nodes and Filtering Routers


- Routers allow only "good" traffic in
- Overlay nodes are "good" traffic
 verify that clients allowed to use service

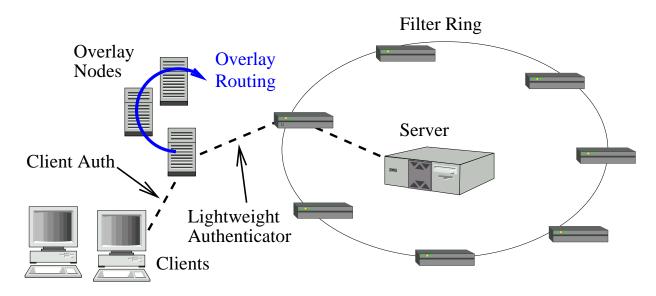
Making it practical

- Effective filtering must be near "core"
- Set of allowed clients dynamic or large
- Core routers can't do heavy-duty filtering
- Let's use existing router capabilities
- X IPsec to the filter routers is a no-go. ►

Architecture

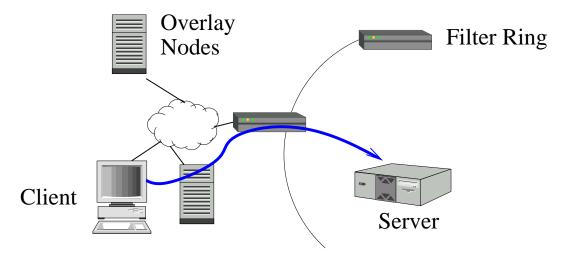
- Clients authenticate to overlay nodes (Can be heavy, not our concern)
- Overlay nodes authenticate to filter ring
 Lightweight Authenticator

- Source Address
 - ✓ Well understood, good with no spoofing
 - X Limited # of correspondant nodes
 - ✗ Updated by filter changes


- Source Address
 - ✓ Well understood, good with no spoofing
 - X Limited # of correspondant nodes
 - ✗ Updated by filter changes
- Server Destination Port
 - ✓ Larger key space (65,000)
 - Many correspondant nodes
 - ✗ Updated by filter changes

- Server Destination Address
 - ✗ Small key space
 - X Changes IP address
 - ✓ Updated via fast routing protocols

- Server Destination Address
 - ✗ Small key space
 - X Changes IP address
 - ✓ Updated via fast routing protocols
- Other header fields
 - ✓ Adds to key space
 - ✗ Not all routers support


Overlay Routing Improves Security

• Fewer nodes have direct access to server

Choice of routing depends on authenticators, paranoia.

Overlay Routing: Proximity

- Like Akamai, great performance
- X All nodes possess authenticator
- ✗ Can't rely on source address auth

Overlay Routing

- Proximity Routing
- Singly-Indirect Routing
 - Ingress node passes to egress node
 - Fewer nodes know authenticator (except for source address)

Overlay Routing

- Proximity Routing
- Singly-Indirect Routing
- Doubly-Indirect Routing
 - Only a few nodes know the egress node
 - ✓ Keeps source auth secret
 - X Overhead grows...

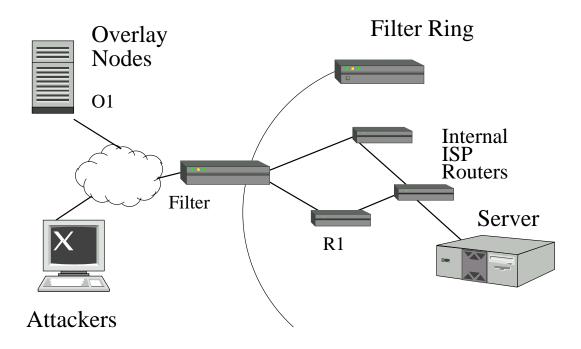
Overlay Routing

- Proximity Routing
- Singly-Indirect Routing
- Doubly-Indirect Routing
- Random or Mix Routing
 - Route through many overlay nodes
 - Resistant to node compromises
 - X Overhead grows more...

Choose protection vs. Overhead

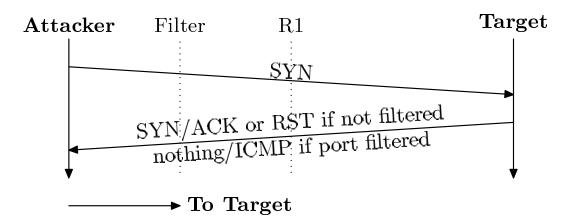
What authenticator / routing combinations?

- Performance: Proximity non-source
 - vulnerable to eavesdroppers
- Eavesdropping: Singly-indirect non-source
 - Random eavesdroppers don't know secret
 - Equivalent security to SOS, fewer hops


Choose protection vs. Overhead

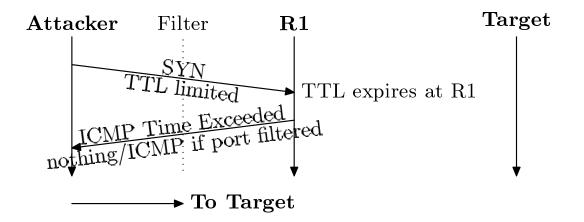
What authenticator / routing combinations?

- Agility: Singly-indirect destination
 - Routing updates can change filters
 - Resists adaptive attacks (discussed next)
- Maximum Security: Mix routing
 - Like Freenet
 - Resists some overlay node compromises

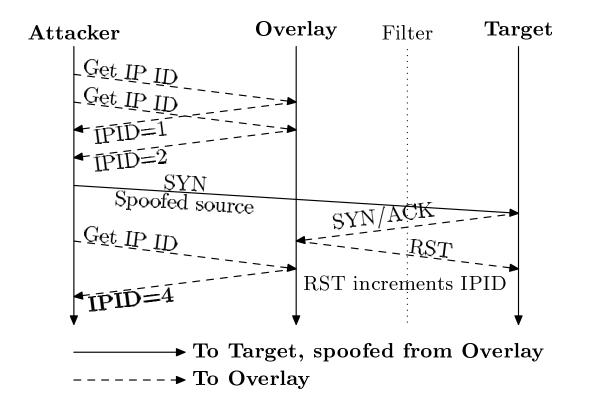

Using more authenticators boosts the key space

Attacks and Defenses

- Basic flooding resistance shown already
- Real networks have third parties, traffic can be sniffed, etc.

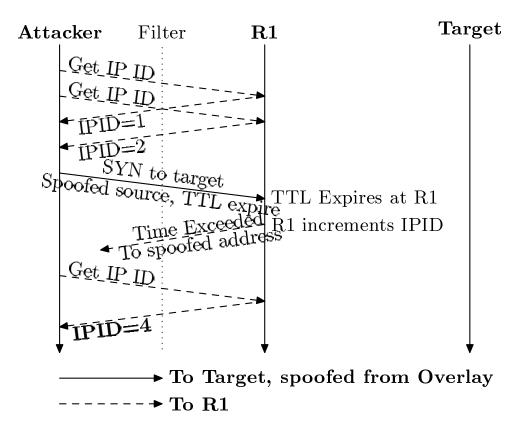

Probing: Basic

- ✗ About 30 seconds to find destination port
- ✓ Secondary Key -


server only responds to good requests.

Probing: Secondary Key

- **X** Use Firewalking against intermediate routers
- \times ... about five minutes to port scan.
- ✓ Fix intermediate routers (ick)
- ✓ Use source address authentication


Probing: Secondary Key + Source

X Use Idlescan via overlay nodes

Fix overlay nodes

Probing: Secondary Key + Source

- X Next-hop scan via routers
- Fix everything...

Further Attacks

- Timing Attacks determine egress node
- Adaptive Flooding smarter flooding, detect slowdown
- Request floods, compromised nodes...
- Shameless plug: All discussed in paper

How big are attacks?

(most data from Savage et al.)

- 30% of attacks \geq 1000 pps
- 5 % \geq 10,000 pps

Large keyspace + Agility

At 1000 pps, how long can we resist attack?

- X Port-scan dest port: 5 minutes
- ✗ Locate egress node: 50 seconds
- ✓ Find both: 4 days
 - Agility: update when discovered

Is any of this practical?

We think so!

- Akamai has a few thousand nodes (And offers "mayday-lite")
- ✓ New core routers can filter at line-speed
 - Useful in a service-provider context
 - Amortize costs, load spikes
 - Not everyone attacked at once.

Conclusions

- Practical, proactive DoS resistance
- ✓ Flexible choices of overhead vs. protection
- Better understanding of attacks (next-hop attack and adaptive flooding novel)
 - Only the first line of defense! Security starts at home.